Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem Toxicol ; 184: 114432, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176580

RESUMEN

BACKGROUND: Human exposure to pesticides is being associated with feminisation for which a decrease of the anogenital distance (AGD) is a sensitive endpoint. Dose addition for the cumulative risk assessment of pesticides in food is considered sufficiently conservative for combinations of compounds with both similar and dissimilar modes of action (MoA). OBJECTIVE: The present study was designed to test the dose addition hypothesis in a binary mixture of endocrine active compounds with a dissimilar mode of action for the endpoint feminisation. METHODS: Compounds were selected from a list of chemicals of which exposure is related to a decrease of the AGD in rats and completed with reference compounds. These chemicals were characterised using specific in vitro transcriptional activation (TA) assays for estrogenic and androgenic properties, leading to a final selection of dienestrol as an ER-agonist and flutamide, linuron, and deltamethrin as AR-antagonists. These compounds were then tested in an in vivo model, i.e. in zebrafish (Danio rerio), using sex ratio in the population as an endpoint in order to confirm their feminising effect and MoA. Ultimately, the fish model was used to test a binary mixture of flutamide and dienestrol. RESULTS: Statistical analysis of the binary mixture of flutamide and dienestrol in the fish sexual development tests (FSDT) with zebrafish supported dose addition.


Asunto(s)
Disruptores Endocrinos , Perciformes , Plaguicidas , Masculino , Animales , Ratas , Humanos , Pez Cebra , Flutamida , Dienestrol , Feminización , Desarrollo Sexual , Disruptores Endocrinos/toxicidad
2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36835019

RESUMEN

Dopamine is present in a subgroup of neurons that are vital for normal brain functioning. Disruption of the dopaminergic system, e.g., by chemical compounds, contributes to the development of Parkinson's disease and potentially some neurodevelopmental disorders. Current test guidelines for chemical safety assessment do not include specific endpoints for dopamine disruption. Therefore, there is a need for the human-relevant assessment of (developmental) neurotoxicity related to dopamine disruption. The aim of this study was to determine the biological domain related to dopaminergic neurons of a human stem cell-based in vitro test, the human neural progenitor test (hNPT). Neural progenitor cells were differentiated in a neuron-astrocyte co-culture for 70 days, and dopamine-related gene and protein expression was investigated. Expression of genes specific for dopaminergic differentiation and functioning, such as LMX1B, NURR1, TH, SLC6A3, and KCNJ6, were increasing by day 14. From day 42, a network of neurons expressing the catecholamine marker TH and the dopaminergic markers VMAT2 and DAT was present. These results confirm stable gene and protein expression of dopaminergic markers in hNPT. Further characterization and chemical testing are needed to investigate if the model might be relevant in a testing strategy to test the neurotoxicity of the dopaminergic system.


Asunto(s)
Neuronas Dopaminérgicas , Células-Madre Neurales , Humanos , Neuronas Dopaminérgicas/metabolismo , Dopamina/metabolismo , Técnicas de Cocultivo , Astrocitos/metabolismo , Diferenciación Celular/fisiología , Células-Madre Neurales/metabolismo
3.
NanoImpact ; 28: 100439, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36402283

RESUMEN

Air-liquid interface (ALI) lung cell models cultured on permeable transwell inserts are increasingly used for respiratory hazard assessment requiring controlled aerosolization and deposition of any material on ALI cells. The approach presented herein aimed to assess the transwell insert-delivered dose of aerosolized materials using the VITROCELL® Cloud12 system, a commercially available aerosol-cell exposure system. An inter-laboratory comparison study was conducted with seven European partners having different levels of experience with the VITROCELL® Cloud12. A standard operating procedure (SOP) was developed and applied by all partners for aerosolized delivery of materials, i.e., a water-soluble molecular substance (fluorescence-spiked salt) and two poorly soluble particles, crystalline silica quartz (DQ12) and titanium dioxide nanoparticles (TiO2 NM-105). The material dose delivered to transwell inserts was quantified with spectrofluorometry (fluorescein) and with the quartz crystal microbalance (QCM) integrated in the VITROCELL® Cloud12 system. The shape and agglomeration state of the deposited particles were confirmed with transmission electron microscopy (TEM). Inter-laboratory comparison of the device-specific performance was conducted in two steps, first for molecular substances (fluorescein-spiked salt), and then for particles. Device- and/or handling-specific differences in aerosol deposition of VITROCELL® Cloud12 systems were characterized in terms of the so-called deposition factor (DF), which allows for prediction of the transwell insert-deposited particle dose from the particle concentration in the aerosolized suspension. Albeit DF varied between the different labs from 0.39 to 0.87 (mean (coefficient of variation (CV)): 0.64 (28%)), the QCM of each VITROCELL® Cloud 12 system accurately measured the respective transwell insert-deposited dose. Aerosolized delivery of DQ12 and TiO2 NM-105 particles showed good linearity (R2 > 0.95) between particle concentration of the aerosolized suspension and QCM-determined insert-delivered particle dose. The VITROCELL® Cloud 12 performance for DQ12 particles was identical to that for fluorescein-spiked salt, i.e., the ratio of measured and salt-predicted dose was 1.0 (29%). On the other hand, a ca. 2-fold reduced dose was observed for TiO2 NM-105 (0.54 (41%)), which was likely due to partial retention of TiO2 NM-105 agglomerates in the vibrating mesh nebulizer of the VITROCELL® Cloud12. This inter-laboratory comparison demonstrates that the QCM integrated in the VITROCELL® Cloud 12 is a reliable tool for dosimetry, which accounts for potential variations of the transwell insert-delivered dose due to device-, handling- and/or material-specific effects. With the detailed protocol presented herein, all seven partner laboratories were able to demonstrate dose-controlled aerosolization of material suspensions using the VITROCELL® Cloud12 exposure system at dose levels relevant for observing in vitro hazard responses. This is an important step towards regulatory approved implementation of ALI lung cell cultures for in vitro hazard assessment of aerosolized materials.


Asunto(s)
Extremidad Superior , Fluoresceína , Correlación de Datos
4.
Environ Health Perspect ; 130(4): 47003, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35394809

RESUMEN

BACKGROUND: Humans are exposed to combinations of chemicals. In cumulative risk assessment (CRA), regulatory bodies such as the European Food Safety Authority consider dose addition as a default and sufficiently conservative approach. The principle of dose addition was confirmed previously for inducing craniofacial malformations in zebrafish embryos in binary mixtures of chemicals with either similar or dissimilar modes of action (MOAs). OBJECTIVES: In this study, we explored a workflow to select and experimentally test multiple compounds as a complex mixture with each of the compounds at or below its no observed adverse effect level (NOAEL), in the same zebrafish embryo model. METHODS: Selection of candidate compounds that potentially induce craniofacial malformations was done using in silico methods-structural similarity, molecular docking, and quantitative structure-activity relationships-applied to a database of chemicals relevant for oral exposure in humans via food (EuroMix inventory, n=1,598). A final subselection was made manually to represent different regulatory fields (e.g., food additives, industrial chemicals, plant protection products), different chemical families, and different MOAs. RESULTS: A final selection of eight compounds was examined in the zebrafish embryo model, and craniofacial malformations were observed in embryos exposed to each of the compounds, thus confirming the developmental toxicity as predicted by the in silico methods. When exposed to a mixture of the eight compounds, each at its NOAEL, substantial craniofacial malformations were observed; according to a dose-response analysis, even embryos exposed to a 7-fold dilution of this mixture still exhibited a slight abnormal phenotype. The cumulative effect of the compounds in the mixture was in accordance with dose addition (added doses of the individual compounds after adjustment for relative potencies), despite different MOAs of the compounds involved. DISCUSSION: This case study of a complex mixture inducing craniofacial malformations in zebrafish embryos shows that dose addition can adequately predicted the cumulative effect of a mixture of multiple substances at low doses, irrespective of the (expected) MOA. The applied workflow may be useful as an approach for CRA in general. https://doi.org/10.1289/EHP9888.


Asunto(s)
Mezclas Complejas , Pez Cebra , Animales , Alimentos , Humanos , Simulación del Acoplamiento Molecular , Medición de Riesgo
5.
Toxics ; 9(10)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34678946

RESUMEN

Tobacco use is the leading cause of preventable death worldwide and is highly addictive. Nicotine is the main addictive compound in tobacco, but less is known about other components and additives that may contribute to tobacco addiction. The zebrafish embryo (ZFE) has been shown to be a good model to study the toxic effects of chemicals on the neurological system and thus may be a promising model to study behavioral markers of nicotine effects, which may be predictive for addictiveness. We aimed to develop a testing protocol to study nicotine tolerance in ZFE using a locomotion test with light-dark transitions as behavioral trigger. Behavioral experiments were conducted using three exposure paradigms: (1) Acute exposure to determine nicotine's effect and potency. (2) Pre-treatment with nicotine dose range followed by a single dose of nicotine, to determine which pre-treatment dose is sufficient to affect the potency of acute nicotine. (3) Pre-treatment with a single dose combined with acute exposure to a dose range to confirm the hypothesized decreased potency of the acute nicotine exposure. These exposure paradigms showed that (1) acute nicotine exposure decreased ZFE activity in response to dark conditions in a dose-dependent fashion; (2) pre-treatment with increasing concentrations dose-dependently reversed the effect of acute nicotine exposure; and (3) a fixed pre-treatment dose of nicotine induced a decreased potency of the acute nicotine exposure. This effect supported the induction of tolerance to nicotine by the pre-treatment, likely through neuroadaptation. The interpretation of these effects, particularly in view of prediction of dependence and addictiveness, and suitability of the ZFE model to test for such effects of other compounds than nicotine, are discussed.

6.
Artículo en Inglés | MEDLINE | ID: mdl-34206423

RESUMEN

Humans are exposed daily to complex mixtures of chemical substances via food intake, inhalation, and dermal contact. Developmental neurotoxicity is an understudied area and entails one of the most complex areas in toxicology. Animal studies for developmental neurotoxicity (DNT) are hardly performed in the context of regular hazard studies, as they are costly and time consuming and provide only limited information as to human relevance. There is a need for a combination of in vitro and in silico tests for the assessment of chemically induced DNT in humans. The zebrafish (Danio rerio) embryo (ZFE) provides a powerful model to study DNT because it shows fast neurodevelopment with a large resemblance to the higher vertebrate, including the human system. One of the suitable readouts for DNT testing in the zebrafish is neurobehaviour (stimulus-provoked locomotion) since this provides integrated information on the functionality and status of the entire nervous system of the embryo. In the current study, environmentally relevant pharmaceuticals and their mixtures were investigated using the zebrafish light-dark transition test. Zebrafish embryos were exposed to three neuroactive compounds of concern, carbamazepine (CBZ), fluoxetine (FLX), and venlafaxine (VNX), as well as their main metabolites, carbamazepine 10,11-epoxide (CBZ 10,11E), norfluoxetine (norFLX), and desvenlafaxine (desVNX). All the studied compounds, except CBZ 10,11E, dose-dependently inhibited zebrafish locomotor activity, providing a distinct behavioural phenotype. Mixture experiments with these pharmaceuticals identified that dose addition was confirmed for all the studied binary mixtures (CBZ-FLX, CBZ-VNX, and VNX-FLX), thereby supporting the zebrafish embryo as a model for studying the cumulative effect of chemical mixtures in DNT. This study shows that pharmaceuticals and a mixture thereof affect locomotor activity in zebrafish. The test is directly applicable in environmental risk assessment; however, further studies are required to assess the relevance of these findings for developmental neurotoxicity in humans.


Asunto(s)
Síndromes de Neurotoxicidad , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Animales , Escala de Evaluación de la Conducta , Embrión no Mamífero , Humanos , Síndromes de Neurotoxicidad/etiología , Pez Cebra
7.
Environ Mol Mutagen ; 62(4): 252-264, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33620775

RESUMEN

TP53 harbors somatic mutations in more than half of human tumors with some showing characteristic mutation spectra that have been linked to environmental exposures. In bladder cancer, a unique distribution of mutations amongst several codons of TP53 has been hypothesized to be caused by environmental carcinogens including 4-aminobiphenyl (4-ABP). 4-ABP undergoes metabolic activation to N-hydroxy-4-aminobiphenyl (N-OH-4-ABP) and forms pre-mutagenic adducts in DNA, of which N-(deoxyguanosin-8-yl)-4-ABP (dG-C8-4-ABP) is the major one. Human TP53 knock-in mouse embryo fibroblasts (HUFs) are a useful model to study the influence of environmental carcinogens on TP53-mutagenesis. By performing the HUF immortalization assay (HIMA) TP53-mutant HUFs are generated and mutations can be identified by sequencing. Here we studied the induction of mutations in human TP53 after treatment of primary HUFs with N-OH-4-ABP. In addition, mutagenicity in the bacterial lacZ reporter gene and the formation of dG-C8-4-ABP, measured by 32 P-postlabelling analysis, were determined in N-OH-4-ABP-treated primary HUFs. A total of 6% TP53-mutants were identified after treatment with 40 µM N-OH-4-ABP for 24 hr (n = 150) with G>C/C>G transversion being the main mutation type. The mutation spectrum found in the TP53 gene of immortalized N-OH-4-ABP-treated HUFs was unlike the one found in human bladder cancer. DNA adduct formation (~40 adducts/108 nucleotides) was detected after 24 hr treatment with 40 µM N-OH-4-ABP, but lacZ mutagenicity was not observed. Adduct levels decreased substantially (sixfold) after a 24 hr recovery period indicating that primary HUFs can efficiently repair the dG-C8-4-ABP adduct possibly before mutations are fixed. In conclusion, the observed difference in the N-OH-4-ABP-induced TP53 mutation spectrum to that observed in human bladder tumors do not support a role of 4-ABP in human bladder cancer development.


Asunto(s)
Compuestos de Aminobifenilo/toxicidad , Aductos de ADN , Daño del ADN , Mutagénesis , Mutágenos/toxicidad , Mutación , Proteína p53 Supresora de Tumor/genética , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
8.
Food Chem Toxicol ; 147: 111855, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33189884

RESUMEN

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a possible human carcinogen formed in cooked fish and meat. PhIP is bioactivated by cytochrome P450 enzymes to form 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP), a genotoxic metabolite that reacts with DNA leading to the mutation-prone DNA adduct N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP). Here, we studied N-OH-PhIP-induced whole genome mutagenesis in human TP53 knock-in (Hupki) mouse embryo fibroblasts (HUFs) immortalised and subjected to whole genome sequencing (WGS). In addition, mutagenicity of N-OH-PhIP in TP53 and the lacZ reporter gene were assessed. TP53 mutant frequency in HUF cultures treated with N-OH-PhIP (2.5 µM for 24 h, n = 90) was 10% while no TP53 mutations were found in untreated controls (DMSO for 24 h, n = 6). All N-OH-PhIP-induced TP53 mutations occurred at G:C base pairs with G > T/C > A transversions accounting for 58% of them. TP53 mutations characteristic of those induced by N-OH-PhIP have been found in human tumours including breast and colorectal, which are cancer types that have been associated with PhIP exposure. LacZ mutant frequency increased 25-fold at 5 µM N-OH-PHIP and up to ~350 dG-C8-PhIP adducts/108 nucleosides were detected by ultra-performance liquid chromatography-electrospray ionisation multistage scan mass spectrometry (UPLC-ESI-MS3) at this concentration. In addition, a WGS mutational signature defined by G > T/C > A transversions was present in N-OH-PhIP-treated immortalised clones, which showed similarity to COSMIC SBS4, 18 and 29 signatures found in human tumours.


Asunto(s)
Fibroblastos/efectos de los fármacos , Imidazoles/toxicidad , Piridinas/toxicidad , Proteína p53 Supresora de Tumor/metabolismo , Animales , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Ratones , Pruebas de Mutagenicidad , Proteína p53 Supresora de Tumor/genética
9.
Arch Toxicol ; 94(12): 4173-4196, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32886187

RESUMEN

Acrylamide is a suspected human carcinogen formed during high-temperature cooking of starch-rich foods. It is metabolised by cytochrome P450 2E1 to its reactive metabolite glycidamide, which forms pre-mutagenic DNA adducts. Using the human TP53 knock-in (Hupki) mouse embryo fibroblasts (HUFs) immortalisation assay (HIMA), acrylamide- and glycidamide-induced mutagenesis was studied in the tumour suppressor gene TP53. Selected immortalised HUF clones were also subjected to next-generation sequencing to determine mutations across the whole genome. The TP53-mutant frequency after glycidamide exposure (1.1 mM for 24 h, n = 198) was 9% compared with 0% in cultures treated with acrylamide [1.5 (n = 24) or 3 mM (n = 6) for 48 h] and untreated vehicle (water) controls (n = 36). Most glycidamide-induced mutations occurred at adenines with A > T/T > A and A > G/T > C mutations being the most common types. Mutations induced by glycidamide occurred at specific TP53 codons that have also been found to be mutated in human tumours (i.e., breast, ovary, colorectal, and lung) previously associated with acrylamide exposure. The spectrum of TP53 mutations was further reflected by the mutations detected by whole-genome sequencing (WGS) and a distinct WGS mutational signature was found in HUF clones treated with glycidamide that was again characterised by A > G/T > C and A > T/T > A mutations. The WGS mutational signature showed similarities with COSMIC mutational signatures SBS3 and 25 previously found in human tumours (e.g., breast and ovary), while the adenine component was similar to COSMIC SBS4 found mostly in smokers' lung cancer. In contrast, in acrylamide-treated HUF clones, only culture-related background WGS mutational signatures were observed. In summary, the results of the present study suggest that glycidamide may be involved in the development of breast, ovarian, and lung cancer.


Asunto(s)
Acrilamida/toxicidad , Compuestos Epoxi/toxicidad , Fibroblastos/efectos de los fármacos , Mutagénesis , Mutágenos/toxicidad , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular , Análisis Mutacional de ADN , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación Completa del Genoma
10.
Toxicol Appl Pharmacol ; 407: 115249, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32979392

RESUMEN

The zebrafish embryo toxicity test (ZFET) is a simple medium-throughput test to inform about (sub)acute lethal effects in embryos. Enhanced analysis through morphological and teratological scoring, and through gene expression analysis, detects developmental effects and the underlying toxicological pathways. Altogether, the ZFET may inform about hazard of chemical exposure for embryonal development in humans, as well as for lethal effects in juvenile and adult fish. In this study, we compared the effects within a series of 12 aliphatic alcohols and related carboxylic acid derivatives (ethanol, acetic acid, 2-methoxyethanol, 2-methoxyacetic acid, 2-butoxyethanol, 2-butoxyacetic acid, 2-hydroxyacetic acid, 2-ethylhexan-1-ol, 2-ethylhexanoic acid, valproic acid, 2-aminoethanol, 2-(2-hydroxyethylamino)ethanol) in ZFET and early life stage (ELS, 28d) exposures, and compared ZFET results with existing results of rat developmental studies and LC50s in adult fish. High correlation scores were observed between compound potencies in ZFET with either ELS, LC50 in fish and developmental toxicity in rats, indicating similar potency ranking among the models. Compounds could be mapped to specific pathways in an adverse outcome pathway (AOP) network through morphological scoring and gene expression analysis in ZFET. Similarity of morphological effects and gene expression profiles in pairs of alcohols with their acid metabolites suggested metabolic activation of the parent alcohols, although with additional, metabolite-independent activity independent for ethanol and 2-ethylhexanol. Overall, phenotypical and gene expression analysis with these compounds indicates that the ZFET can potentially contribute to the AOP for developmental effects in rodents, and to predict toxicity of acute and chronic exposure in advanced life stages in fish.


Asunto(s)
Ácidos Carboxílicos/toxicidad , Embrión no Mamífero/metabolismo , Alcoholes Grasos/toxicidad , Pez Cebra/metabolismo , Animales , Desarrollo Embrionario/efectos de los fármacos , Etanol/toxicidad , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hexanoles/toxicidad , Dosificación Letal Mediana , Embarazo , Ratas , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/crecimiento & desarrollo
11.
Food Chem Toxicol ; 137: 111117, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31927004

RESUMEN

A challenge in cumulative risk assessment is to model hazard of mixtures. EFSA proposed to only combine chemicals linked to a defined endpoint, in so-called cumulative assessment groups, and use the dose-addition model as a default to predict combined effects. We investigated the effect of binary mixtures of compounds known to cause craniofacial malformations, by assessing the effect in the head skeleton (M-PQ angle) in 120hpf zebrafish embryos. We combined chemicals with similar mode of action (MOA), i.e. the triazoles cyproconazole, triadimefon and flusilazole; next, reference compounds cyproconazole or triadimefon were combined with dissimilar acting compounds, TCDD, thiram, VPA, prochloraz, fenpropimorph, PFOS, or endosulfan. These mixtures were designed as (near) equipotent combinations of the contributing compounds, in a range of cumulative concentrations. Dose-addition was assessed by evaluation of the overlap of responses of each of the 14 tested binary mixtures with those of the single compounds. All 10 test compounds induced an increase of the M-PQ angle, with varying potency and specificity. Mixture responses as predicted by dose-addition did not deviate from the observed responses, supporting dose-addition as a valid assumption for mixture risk assessment. Importantly, dose-addition was found irrespective of MOA of contributing chemicals.


Asunto(s)
Anomalías Craneofaciales/veterinaria , Enfermedades de los Peces/etiología , Silanos/toxicidad , Triazoles/toxicidad , Pez Cebra/embriología , Animales , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/etiología , Enfermedades de los Peces/embriología , Pez Cebra/anomalías , Pez Cebra/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-31699347

RESUMEN

Chemical safety evaluations require assessment of genetic toxicity. Transgenic rodent (TGR) assays permit enumeration of mutations in chromosomally-integrated targets contained in shuttle vectors. In order to improve in vitro mutagenicity assessment, and to substantially reduce animal use, in vitro assays using transgenic reporters have been developed. These assays are based on cells derived from TGRs, or cells transfected with transgenic shuttle vectors containing a mutation target. As part of the 7th International Workshop on Genotoxicity Testing, an In Vitro Mammalian Cell Gene Mutation Assay working group reviewed all published information pertaining to in vitro transgene mutagenicity assays; the utility, advantages and disadvantages of the assays were evaluated and discussed. The review revealed that over 20 TGR-based in vitro assays have been used to assess the mutagenic activity of over 150 agents. Overall, the Working Group considered in vitro transgene mutagenicity assays pragmatic tools for the safety evaluation of new and existing substances. A formal SWOT (strengths, weaknesses, opportunities, threats) analysis revealed advantages including the use of established scoring protocols, avoidance of laborious clone isolation and enumeration, ability to use metabolically competent primary cells, ability to detect different types of genetic damage, large dynamic range, and complementarity to in vivo TGR endpoints. Disadvantages include lack of validation and little consistency in protocols, the use of specialised reagents, the time and effort required for mutant enumeration, the use of some cell lines that lack metabolic capacity, and the need for multiple assays to cover all mutational mechanisms. Several assays have been partially validated, indicating promising reliability, reproducibility and applicability domain. Once in vitro transgene mutagenicity assays have been more thoroughly validated, they are well placed to augment or replace existing in vitro mammalian cell mutagenicity assays, particularly in cases where the in vivo TGR mutation assay is intended for follow-up.


Asunto(s)
Animales Modificados Genéticamente , Genes Reporteros/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Transgenes/efectos de los fármacos , Animales , Biotransformación , División Celular/efectos de los fármacos , Línea Celular , Proteínas de Escherichia coli/genética , Vectores Genéticos/genética , Humanos , Técnicas In Vitro , Operón Lac , Pentosiltransferasa/genética , Reproducibilidad de los Resultados , Proyectos de Investigación , Roedores , Estudios de Validación como Asunto
13.
Environ Mol Mutagen ; 60(4): 348-360, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30714215

RESUMEN

As demonstrated in Part I, cultured MutaMouse primary hepatocytes (PHs) are suitable cells for use in an in vitro gene mutation assay due to their metabolic competence, their "normal" phenotype, and the presence of the MutaMouse transgene for reliable mutation scoring. The performance of these cells in an in vitro gene mutation assay is evaluated in this study, Part II. A panel of 13 mutagenic and nonmutagenic compounds was selected to investigate the performance of the MutaMouse PH in vitro gene mutation assay. The nine mutagens represent a range of classes of chemicals and include mutagens that are both direct-acting and requiring metabolic activation. All the mutagens tested, except for ICR 191, elicited significant, concentration-dependent increases in mutant frequency (MF) ranging from 2.6- to 14.4-fold over the control. None of the four nonmutagens, including two misleading, or "false," positives (i.e., tertiary butylhydroquinone [TBHQ] and eugenol), yielded any significant increases in MF. The benchmark dose covariate approach facilitated ranking of the positive chemicals from most (i.e., 3-nitrobenzanthrone [3-NBA], benzo[a]pyrene [BaP], and aflatoxin B1 [AFB1]) to least (i.e., N-ethyl-N-nitrosourea [ENU]) potent. Overall, the results of this preliminary validation study suggest that this assay may serve as a complimentary tool alongside the standard genotoxicity test battery. This study, alongside Part I, illustrates the promise of MutaMouse PHs for use in an in vitro gene mutation assay, particularly for chemicals requiring metabolic activation. Environ. Mol. Mutagen. 60:348-360, 2019. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Asunto(s)
Hepatocitos/efectos de los fármacos , Mutagénesis/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Animales , Separación Celular/métodos , Células Cultivadas , Femenino , Hepatocitos/citología , Hepatocitos/metabolismo , Operón Lac/efectos de los fármacos , Ratones , Tasa de Mutación , Transgenes/efectos de los fármacos
14.
Environ Mol Mutagen ; 60(4): 331-347, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30592088

RESUMEN

To develop an improved in vitro mammalian cell gene mutation assay, it is imperative to address the known deficiencies associated with existing assays. Primary hepatocytes isolated from the MutaMouse are ideal for an in vitro gene mutation assay due to their metabolic competence, their "normal" karyotype (i.e., neither transformed nor immortalized), and the presence of the MutaMouse transgene for rapid and reliable mutation scoring. The cells were extensively characterized to confirm their utility. Freshly isolated cells were found to have a hepatocyte-like morphology, predominantly consisting of binucleated cells. These cells maintain hepatocyte-specific markers for up to 3 days in culture. Analyses revealed a normal murine hepatocyte karyotype with a modal ploidy number of 4n. Fluorescence in situ hybridization analysis confirmed the presence of the lambda shuttle vector on chromosome 3. The doubling time was determined to be 22.5 ± 3.3 h. Gene expression and enzymatic activity of key Phase I and Phase II metabolic enzymes were maintained for at least 8 and 24 h in culture, respectively. Exposure to ß-naphthoflavone led to approximately 900- and 9-fold increases in Cyp1a1 and Cyp1a2 gene expression, respectively, and approximately twofold induction in cytochrome P450 (CYP) 1A1/1A2 activity. Exposure to phenobarbital resulted in an approximately twofold increase in CYP 2B6 enzyme activity. Following this characterization, it is evident that MutaMouse primary hepatocytes have considerable promise for in vitro mutagenicity assessment. The performance of these cells in an in vitro gene mutation assay is assessed in Part II. Environ. Mol. Mutagen. 60:331-347, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Asunto(s)
Separación Celular/métodos , Hepatocitos/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Animales , Línea Celular , Células Cultivadas , Expresión Génica/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Hibridación Fluorescente in Situ/métodos , Cariotipo , Cariotipificación/métodos , Ratones , Ratones Endogámicos BALB C , Mutagénesis/efectos de los fármacos
15.
Arch Toxicol ; 92(12): 3549-3564, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30288550

RESUMEN

The EU-EuroMix project adopted the strategy of the European Food Safety Authority (EFSA) for cumulative risk assessment, which limits the number of chemicals to consider in a mixture to those that induce a specific toxicological phenotype. These so-called cumulative assessment groups (CAGs) are refined at several levels, including the target organ and specific phenotype. Here, we explore the zebrafish embryo as a test model for quantitative evaluation in one such CAG, skeletal malformations, through exposure to test compounds 0-120 hpf and alcian blue cartilage staining at 120 hpf, focusing on the head skeleton. Reference compounds cyproconazole, flusilazole, metam, and thiram induced distinctive phenotypes in the head skeleton between the triazoles and dithiocarbamates. Of many evaluated parameters, the Meckel's-palatoquadrate (M-PQ) angle was selected for further assessment, based on the best combination of a small confidence interval, an intermediate maximal effect size and a gentle slope of the dose-response curve with cyproconazole and metam. Additional test compounds included in the CAG skeletal malformations database were tested for M-PQ effects, and this set was supplemented with compounds associated with craniofacial malformations or cleft palate to accommodate otherwise organized databases. This additional set included hexaconazole, all-trans-retinoic acid, AM580, CD3254, maneb, pyrimethanil, imidacloprid, pirimiphos-methyl, 2,4-dinitrophenol, 5-fluorouracil, 17alpha-ethynylestradiol (EE2), ethanol, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), PCB 126, methylmercury, boric acid, and MEHP. Most of these compounds produced a dose-response for M-PQ effects. Application of the assay in mixture testing was provided by combined exposure to cyproconazole and TCDD through the isobole method, supporting that in this case the combined effect can be modeled through concentration addition.


Asunto(s)
Desarrollo Óseo/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Pruebas de Toxicidad/métodos , Animales , Anomalías Craneofaciales/inducido químicamente , Relación Dosis-Respuesta a Droga , Medición de Riesgo/métodos , Cráneo/anomalías , Cráneo/efectos de los fármacos , Cráneo/embriología , Pez Cebra
16.
Crit Rev Toxicol ; 48(6): 500-511, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29745287

RESUMEN

Non-genotoxic carcinogens (NGTXCs) do not cause direct DNA damage but induce cancer via other mechanisms. In risk assessment of chemicals and pharmaceuticals, carcinogenic risks are determined using carcinogenicity studies in rodents. With the aim to reduce animal testing, REACH legislation states that carcinogenicity studies are only allowed when specific concerns are present; risk assessment of compounds that are potentially carcinogenic by a non-genotoxic mode of action is usually based on subchronic toxicity studies. Health-based guidance values (HBGVs) of NGTXCs may therefore be based on data from carcinogenicity or subchronic toxicity studies depending on the legal framework that applies. HBGVs are usually derived from No-Observed-Adverse-Effect-Levels (NOAELs). Here, we investigate whether current risk assessment of NGTXCs based on NOAELs is protective against cancer. To answer this question, we estimated Benchmark doses (BMDs) for carcinogenicity data of 44 known NGTXCs. These BMDs were compared to the NOAELs derived from the same carcinogenicity studies, as well as to the NOAELs derived from the associated subchronic studies. The results lead to two main conclusions. First, a NOAEL derived from a subchronic study is similar to a NOAEL based on cancer effects from a carcinogenicity study, supporting the current practice in REACH. Second, both the subchronic and cancer NOAELs are, on average, associated with a cancer risk of around 1% in rodents. This implies that for those chemicals that are potentially carcinogenic in humans, current risk assessment of NGTXCs may not be completely protective against cancer. Our results call for a broader discussion within the scientific community, followed by discussions among risk assessors, policy makers, and other stakeholders as to whether or not the potential cancer risk levels that appear to be associated with currently derived HBGVs of NGXTCs are acceptable.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Carcinógenos/toxicidad , Neoplasias/inducido químicamente , Animales , Pruebas de Carcinogenicidad/normas , Daño del ADN , Femenino , Humanos , Masculino , Nivel sin Efectos Adversos Observados , Medición de Riesgo/métodos , Medición de Riesgo/normas
17.
Environ Mol Mutagen ; 57(9): 643-655, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27859631

RESUMEN

Assessment of genotoxic potential is an important step in the safety evaluation of chemical substances. Under most regulatory jurisdictions, the first tier of testing comprises a standard battery of in vitro genotoxicity tests in bacterial and mammalian cells. However, the mammalian cell tests commonly used exhibit a relatively high rate of misleading positive results, which may lead to unnecessary in vivo testing. We previously established a proof-of-concept for the LacZ reporter assay in proliferating primary hepatocytes as a promising alternative genotoxicity test. Here, cryopreserved instead of freshly isolated hepatocytes were used and the assay was evaluated in more detail. We examined the effect of cryopreservation on phenotype and metabolic capacity of the LacZ hepatocytes, and assessed the predictive performance of the assay by testing a set of substances comprising true positive, true negative, and misleading positive substances. Additionally, a historical negative control database was created and the type of mutations induced was analyzed for two of the substances tested. Our findings indicate that proliferating cryopreserved primary hepatocytes derived from LacZ plasmid mice retain their hepatocyte-specific characteristics and metabolic competence. Furthermore, we demonstrate that both gene mutations and genome rearrangements due to large deletions can be detected with the LacZ reporter assay. The assay seems to have a lower rate of misleading positive test results compared to the assays currently used. Together, our findings strongly support the use of the LacZ reporter assay in cryopreserved primary hepatocytes as follow-up to the standard in vitro test battery for genotoxicity testing. Environ. Mol. Mutagen. 57:643-655, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Criopreservación , Hepatocitos/efectos de los fármacos , Operón Lac , Pruebas de Mutagenicidad/métodos , Alternativas a las Pruebas en Animales , Animales , Biomarcadores , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Citocromo P-450 CYP1A1/metabolismo , Relación Dosis-Respuesta a Droga , Hepatocitos/enzimología , Hepatocitos/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutágenos/toxicidad , Plásmidos , Cultivo Primario de Células , Sensibilidad y Especificidad , Transgenes
18.
DNA Repair (Amst) ; 39: 21-33, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26723900

RESUMEN

3-Nitrobenzanthrone (3-NBA) is a highly mutagenic compound and possible human carcinogen found in diesel exhaust. 3-NBA forms bulky DNA adducts following metabolic activation and induces predominantly G:CT:A transversions in a variety of experimental systems. Here we investigated the influence of nucleotide excision repair (NER) on 3-NBA-induced mutagenesis of the human tumour suppressor gene TP53 and the reporter gene lacZ. To this end we utilised Xpa -knockout (Xpa-Null) human TP53 knock-in (Hupki) embryo fibroblasts (HUFs). As Xpa is essential for NER of bulky DNA adducts, we hypothesized that DNA adducts induced by 3-NBA would persist in the genomes of Xpa-Null cells and lead to an increased frequency of mutation. The HUF immortalisation assay was used to select for cells harbouring TP53 mutations following mutagen exposure. We found that Xpa-Null Hupki mice and HUFs were more sensitive to 3-NBA treatment than their wild-type (Xpa-WT) counterparts. However, following 3-NBA treatment and immortalisation, a similar frequency of TP53-mutant clones arose from Xpa-WT and Xpa-Null HUF cultures. In cells from both Xpa genotypes G:CT:A transversion was the predominant TP53 mutation type and mutations exhibited bias towards the non-transcribed strand. Thirty-two percent of 3-NBA-induced TP53 mutations occurred at CpG sites, all of which are hotspots for mutation in smokers' lung cancer (codons 157, 158, 175, 245, 248, 273, 282). We also examined 3-NBA-induced mutagenesis of an integrated lacZ reporter gene in HUFs, where we again observed a similar mutant frequency in Xpa-WT and Xpa-Null cells. Our findings suggest that 3-NBA-DNA adducts may evade removal by global genomic NER; the persistence of 3-NBA adducts in DNA may be an important factor in its mutagenicity.


Asunto(s)
Benzo(a)Antracenos/farmacología , Reparación del ADN , Fibroblastos/metabolismo , Mutagénesis , Proteína p53 Supresora de Tumor/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Animales , ADN/efectos de los fármacos , ADN/metabolismo , Aductos de ADN , Daño del ADN , Femenino , Fibroblastos/efectos de los fármacos , Eliminación de Gen , Genes Bacterianos/efectos de los fármacos , Genes Bacterianos/genética , Operón Lac/efectos de los fármacos , Operón Lac/genética , Ratones , Ratones Mutantes , Mutágenos/farmacología , Proteína p53 Supresora de Tumor/efectos de los fármacos
19.
Arch Toxicol ; 89(12): 2413-27, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25270620

RESUMEN

Alternative methods to detect non-genotoxic carcinogens are urgently needed, as this class of carcinogens goes undetected in the current testing strategy for carcinogenicity under REACH. A complicating factor is that non-genotoxic carcinogens act through several distinctive modes of action, which makes prediction of their carcinogenic property difficult. We have recently demonstrated that gene expression profiling in primary mouse hepatocytes is a useful approach to categorize non-genotoxic carcinogens according to their modes of action. In the current study, we improved the methods used for analysis and added mouse embryonic stem cells as a second in vitro test system, because of their features complementary to hepatocytes. Our approach involved an unsupervised analysis based on the 30 most significantly up- and down-regulated genes per chemical. Mouse embryonic stem cells and primary mouse hepatocytes were exposed to a selected set of chemicals and subsequently subjected to gene expression profiling. We focused on non-genotoxic carcinogens, but also included genotoxic carcinogens and non-carcinogens to test the robustness of this approach. Application of the optimized comparison approach resulted in improved categorization of non-genotoxic carcinogens. Mouse embryonic stem cells were a useful addition, especially for genotoxic substances, but also for detection of non-genotoxic carcinogens that went undetected by primary hepatocytes. The approach presented here is an important step forward to categorize chemicals, especially those that are carcinogenic.


Asunto(s)
Carcinógenos/toxicidad , Células Madre Embrionarias/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Toxicogenética/métodos , Animales , Regulación hacia Abajo/efectos de los fármacos , Células Madre Embrionarias/patología , Perfilación de la Expresión Génica , Hepatocitos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutágenos/toxicidad , Regulación hacia Arriba/efectos de los fármacos
20.
Arch Toxicol ; 86(11): 1717-27, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22710402

RESUMEN

Under REACH, the European Community Regulation on chemicals, the testing strategy for carcinogenicity is based on in vitro and in vivo genotoxicity assays. Given that non-genotoxic carcinogens are negative for genotoxicity and chronic bioassays are no longer regularly performed, this class of carcinogens will go undetected. Therefore, test systems detecting non-genotoxic carcinogens, or even better their modes of action, are required. Here, we investigated whether gene expression profiling in primary hepatocytes can be used to distinguish different modes of action of non-genotoxic carcinogens. For this, primary mouse hepatocytes were exposed to 16 non-genotoxic carcinogens with diverse modes of action. Upon profiling, pathway analysis was performed to obtain insight into the biological relevance of the observed changes in gene expression. Subsequently, both a supervised and an unsupervised comparison approach were applied to recognize the modes of action at the transcriptomic level. These analyses resulted in the detection of three of eight compound classes, that is, peroxisome proliferators, metalloids and skin tumor promotors. In conclusion, gene expression profiles in primary hepatocytes, at least in rodent hepatocytes, appear to be useful to detect some, certainly not all, modes of action of non-genotoxic carcinogens.


Asunto(s)
Carcinógenos/toxicidad , Perfilación de la Expresión Génica , Hepatocitos/efectos de los fármacos , Pruebas de Toxicidad/métodos , Animales , Carcinógenos/administración & dosificación , Carcinógenos/metabolismo , Carcinógenos/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Mutágenos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...